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Summary

 UK and Ireland classification

EUNIS 2008 A1.2141
Fucus serratus and red seaweeds on moderately exposed lower
eulittoral rock

JNCC 2015 LR.MLR.BF.Fser.R
Fucus serratus and red seaweeds on moderately exposed lower
eulittoral rock

JNCC 2004 LR.MLR.BF.Fser.R
Fucus serratus and red seaweeds on moderately exposed lower
eulittoral rock

1997 Biotope LR.MLR.BF.Fser.R
Fucus serratus and red seaweeds on moderately exposed lower
eulittoral rock

 Description

Moderately exposed lower eulittoral bedrock characterized by mosaics of the wrack Fucus
serratus and turf-forming red seaweeds including Osmundea pinnatifida, Mastocarpus



Date: 2015-08-21 Fucus serratus and red seaweeds on moderately exposed lower eulittoral rock - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/43 4

stellatus or Corallina officinalis. The hydroid Dynamena pumilacan occur in dense populations on
the Fucus serratus fronds whilst the sponge Halichondria panicea can cover the bedrock beneath.
Underneath the canopy a number of other red seaweeds may be present including Palmaria
palmata, Lomentaria articulata, Membranoptera alata and Chondrus crispus. Green seaweeds such
as Cladophora rupestris, Ulva intestinalis and Ulva lactuca are present though usually in small
numbers. In addition, such shores provide a greater number of permanently damp refuges
between the stones and underneath the seaweed canopy. Within these micro-habitats species
such as the limpet Patella vulgata, the barnacle Semibalanus balanoides or the whelk Nucella
lapillus can be found in lower abundance than higher up the shore. If a few boulders are present
then the winkle Littorina littorea and the crab Carcinus maenas can be found on or underneath the
boulders.  (Information taken from Connor et al., 2004; JNCC, 2015).

 Depth range

Lower shore

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iFucus+serratus/i+and+red+seaweeds+on+moderately+exposed+lower+eulittoral+rock
http://scholar.google.co.uk/scholar?q=iFucus+serratus/i+and+red+seaweeds+on+moderately+exposed+lower+eulittoral+rock
http://www.google.co.uk/search?q=LR.MLR.BF.Fser.R
https://mhc.jncc.gov.uk/search/?q=LR.MLR.BF.Fser.R
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

This biotope group is dominated by the brown seaweed Fucus serratus, with an association of red
seaweeds (inc. Osmundea pinnatifida, Mastocarpus stellatus, Palmaria palmata  and Corallina
officinalis).  Fucus serratus provides habitat and food for a highly diverse community of species
(Fredriksen et al., 2005). As ecosystem engineers fucoid algal canopies modify habitat conditions,
facilitating the existence and survival of other intertidal species and therefore strongly influencing
the structure and functioning of coastal ecosystems (Jenkins et al., 2008). Associated fauna include
the limpet Patella vulgata, the barnacle Semibalanus balanoides, the whelk Nucella lapillus, the
anemone Actinia equina and the sponge Halichondria panicea. 

The loss of Fucus serratus canopy will have both short and long-term consequences for associated
benthic communities, resulting in the loss of biogenic habitat, reduction in diversity, simplification
of vertical structure and reduction or loss of ecosystem functioning such as primary productivity
(Lilley & Schiel, 2006). The removal of macroalgae canopy exposes understory species to sunlight
and aerial conditions resulting in bleaching and eventual die backs, especially for encrusting
corralines, bryozoans and hydroids (Hawkins & Harkin, 1985). 

The assessments are based largely on the sensitivity of Fucus serratus, as this is the key species
characterizing the biotope and providing habitat. Other species associated with the biotope are
found in a range of hard substratum biotopes, therefore, although these species contribute to the
structure and function of the biotope they are not considered key species and are not specifically
assessed.  Connor et al. (2004) note that this biotope may vary seasonally, e.g. the red seaweed
abundance is likely to be lower in winter and higher in spring and summer and severe storms may
change this biotope to a Fucus serratus dominated (e.g MLR.BF.Fser) or red seaweed dominated
biotope. 

 Resilience and recovery rates of habitat

The loss of Fucus serratus canopy will have both short and long-term consequences for associated
benthic communities, resulting in the loss of habitat, reduction in diversity, simplification of
vertical structure and reduction or loss of ecosystem functioning such as primary productivity
(Hawkins & Harkin, 1985; Lilley & Schiel, 2006). The removal of macroalgae canopy exposes
understory species to sunlight and aerial conditions during low tides resulting in bleaching and
eventual die backs.

Schiel & Foster (2006) observed long-term demographic lags in recovery after important losses of
fucoids. Recovery of lost or severely reduced species can be slow, with species replacement
common. Indeed loss of fucoids can cause systems shifts to a state dominated by low-lying turf or
filamentous ephemeral algae (Airoldi et al., 2008; Mangialajo et al., 2008; Perkol-Finkel & Airoldi,
2010). Turf algae, especially corallines, are often highly resilient and positively associated with
perturbed areas, and can recover and reach greater abundance compared to prior disturbance
conditions (Bulleri et al., 2002; Bertocci et al., 2010). These turf algae can then prevent canopy
recovery by inhibiting recruitment. Stagnol et al. (2013) observed Patella vulgata recruiting in bare
patches of disturbed plots. Experimental studies have shown that limpets control the development
of macroalgae by consuming microscopic phases (Jenkins et al., 2005) or the adult stages (Davies et
al., 2007). The increase in Patella vulgata abundance could thus limit the recruitment and growth of
Fucus serratus on the impact zone.  Stagnol et al. (2013) found that opportunistic ephemeral green
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algae such as Ulva sp. responded positively to disturbance (removal of the canopy). These green
ephemeral algae are major competitors of Fucus serratus for space colonization and nutrient
uptake. Blooms of ephemeral algae facilitated by disturbance may then slow the development of
longer-lived perennial algae, especially fucoids.

Disturbance is a structuring factor in intertidal habitats. Perturbation events often remove
organisms, increasing mortality, and also release resources such as space, nutrients and light that
may enhance the appearance of new colonists (Connell et al., 1997). As a result of these
contrasting effects, post-disturbance communities are frequently different from initial
communities in terms of composition and dominance of species. Overall, disturbance causes a shift
towards a disturbance tolerant seaweed community (Little et al., 2009). The changes in dominant
species and community structure take some time to develop and, although some effects occur
rapidly, many are manifested over a period of several years (Schiel & Lilley, 2011). Hawkins &
Southward (1992) found that, after the Torrey Canyon oil spill, it took between 10 and 15 years for
the Fucus sp. to return to 'normal' levels of spatial and variation in cover on moderately exposed
shores. Therefore, for pressures that totally destroy the biotope, recoverability is likely to be low.

Fucus serratus is dioecious, perennial and reproduces sexually. Reproduction commences in late
spring/early summer and continues through summer and autumn, peaking in August - October.
Eggs and sperm are released into the water and fertilization occurs in the water column. The
zygote then develops into a minute plant that can then settle onto the substratum. Arrontes
(1993) determined that the dispersal of Fucus serratus gametes and fertilized eggs was restricted to
within 1–2 m from the parent. Average annual expansion rates for Fucus serratus have been
estimated at 0.3 to 0.6 km per year (Coyer et al., 2006; Brawley et al., 2009). Dispersal is highly
limited as the negatively buoyant eggs are fertilized almost immediately after release and dispersal
by rafting reproductive individuals is unlikely (Coyer et al., 2006). Fucus serratus does not float, and
thus mature detached individuals cannot transport reproductive material to distant sites as might
be the case for other brown algae. However Fucus serratus is found on all British and Irish coasts so
there are few mechanisms isolating populations. While poor dispersal is true for medium or large
spatial scales (hundreds of metres to kilometres), recruitment at short distances from parental
patches is very efficient, as most propagules settle in the vicinity of parent plants (Arrontes, 2002).

In kelp canopy removal experiments in the Isle of Man, Hawkins & Harkin (1985) observed a rapid
increase in the number of Palmaria palmata sporelings and the species came to dominate cleared
plots within five months. Rhodophyceae have non flagellate, and non-motile spores that stick on
contact with the substratum. Norton (1992) noted that algal spore dispersal is probably
determined by currents and turbulent deposition. However, red algae produce large numbers of
spores that may settle close to the adult especially where currents are reduced by an algal turf or
in kelp forests. It is likely that this species could recolonize an area from adjacent populations
within a short period of time in ideal conditions. However, since the dispersal range of spores is
limited because the female does not release carpospores and needs to be close to the adult male
population, recolonization from distant populations would probably take much longer.

Chondrus crispus has an extended reproductive period (e.g. Pybus, 1977; Fernandez & Menendez,
1991; Scrosati et al., 1994) and produces large numbers of spores (Fernandez & Menendez, 1991).
Recovery of a population of Chondrus crispus following a perturbation is likely to be largely
dependent on whether holdfasts remain, from which new thalli can regenerate (Holt et al., 1995).
In addition, the spores of red algae are non-motile (Norton, 1992) and therefore entirely reliant on
the hydrographic regime for dispersal. Hence, similar to Fucus serratus, Chondrus crispus would
normally only recruit from local populations slowing down the recovery of remote populations.
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Minchinton et al. (1997) documented the recovery of Chondrus crispus after a rocky shore in Nova
Scotia, Canada, was totally denuded by an ice scouring event. Initial recolonization was dominated
by diatoms and ephemeral macroalgae, followed by fucoids and then perennial red seaweeds.
After 2 years, Chondrus crispus had re-established approximately 50% cover on the lower shore
and after 5 years it was the dominant macroalga at this height, with approximately 100% cover.
Minchinton et al. (1997) concluded that although Chondrus crispus was a poor colonizer, it was the
best competitor.      

The larvae of the sea squirt Ascidiella aspersa have a short free-swimming planktonic stage.
Fertilization to settlement and metamorphosis is estimated to only take about 24 hours at 20 °C
(Niermann-Kerkenberg & Hofmann, 1989). The sea squirt Ascidiella scabra has a high fecundity and
settles readily, probably for an extended period from spring to autumn. Svane (1988) describes it
as "an annual ascidian" and demonstrated recruitment onto artificial and scraped natural
substrata. It is also likely that Ascidiella scabra larvae are attracted by existing populations and
settle near to adults (Svane et al., 1987). Fast growth means that a dense cover could be
established within about 2 months. However, if mortality occurs at a time when larvae are not
being produced, other species may settle and dominate in the freed spaces.The settlement of new
colonies of the breadcrumb sponge Halichondria panicea is likely to occur within one year with
growth rate ranging from −0.1 to 0.4 cm2/day. Knowlton & Highsmith (2005) found a rapid
response to tissue damage from nudibranch grazing with the sponge recovering within 4 weeks
from grazing impacts.

Resilience assessment. Fucus serratus is the main structural species as its removal will lead cause
the decline of associated species and eventually to a change towards a different biotope. If the
entire population of Fucus serratus is lost other species may come to dominate. Where resistance is
‘None’, then resilience is ‘Low’ based on the low long-distance dispersal range of Fucus serratus. Re-
establishment of the seaweed may depend on the ability to out-compete other species and this
may be dependent on suitable environmental conditions. Upon arrival, the success of the new
population is explained by: (1) rapid establishment of monospecific patches in the immediate
vicinity of the founding plants, (2) high colonization rates of disturbed areas, (3) the ability to
recruit to undisturbed canopies, (4) the ability to outgrow resident canopy species (particularly
Fucus vesiculosus) and (5) the increase in size and number of dispersal centres (Arrontes, 2002).

If some of the population remains it is unlikely that other species will come to dominate due to
efficient recruitment over short distance. Removal of some of the adult canopy will allow the
understorey germling to grow faster. After experimental (small scale 2 sq. metre) canopy removal
of Fucus serratus on a moderately exposed shore, the Fucus serratus cover recovered within one
year and both Fucus serratus and Palmaria palmata dominated the area (Hawkins & Harkin,
1985).  Therefore, recovery from small scale distrubance will probably have take no more than two
years. Therefore when resistance is ‘Medium’, recovery will be very fast resulting in a ‘High’
resilience score due to very efficient colonization of areas adjacent to Fucus serratus patches. If
resistance is assessed as ‘High’, resilience is automatically ‘High’ as there are not impacts to
recover from.

Moderately strong tidal currents, characteristic of this biotope, encourage communities of
sponges and ascidians. Changes to the hydrological regime are therefore likely to directly
influence the presence of these species. Once removed, these species are however likely to rapidly
recolonize due to planktonic larvae thereby facilitating recruitment. Most species associated with
this biotope are poor long distance dispersers. However the moderately strong tidal currents of
this biotope enable these species to disperse over greater distances than in slow flowing
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environments.

The resilience and the ability to recover from human induced pressures is a combination of the
environmental conditions of the site, the frequency (repeated disturbances versus a one-off event)
and the intensity of the disturbance.  Recovery of impacted populations will always be mediated by
stochastic events and processes acting over different scales including, but not limited to, local
habitat conditions, further impacts and processes such as larval-supply and recruitment between
populations. Full recovery is defined as the return to the state of the habitat that existed prior to
impact.  This does not necessarily mean that every component species has returned to its prior
condition, abundance or extent but that the relevant functional components are present and the
habitat is structurally and functionally recognisable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Not sensitive
Q: High A: Low C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Most fucoids are cold-temperate species (Lüning, 1984), and temperatures above 20°C are
generally considered unsuitable for these algae (Zou et al., 2012). The effect of high temperature
stress on photosynthesis in brown algae is related to inactivation of enzymes and the induction of
reactive oxygen species (ROS), leading to photoinhibition (Suzuki & Mittler, 2006). Growth rates of
adult brown macroalgae may be affected by temperature through the increase in metabolic rates
(Nygard & Dring, 2008). However, Fucus serratus is found along the Atlantic coast of Europe from
Svalbard to Portugal and on the shores of north-east America. The seaweed is thus well within its
thermal range in the British Isles. Nielsen et al. (2014) found no negative effects on growth rates of
adult Fucus serratus to water temperatures of 22 °C (based on a laboratory experiment with
specimen collected from Firth of Forth, Scotland) and Arrontes (1993) observed that Fucus serratus
survived in laboratory experiments for 1 week at 25 °C. Nielsen et al. (2014) did, however,
report that germlings were negatively affected by increased temperature indicating that early life
stages are more vulnerable than mature algae to this pressure.

Several studies have observed adverse effects of Fucus serratus as a result to warm thermal stress
in terms of growth, physiological performance and reproductive output in Spain and Portugal
(Pearson et al., 2009; Viejo et al., 2011; Martínez et al., 2012). Jueterbock et al. (2014) determined
that these negative impacts can be explained by restricted within-population genetic diversity.
South west Ireland and Brittany are hot-spots of genetic diversity (Coyer et al., 2003; Hoarau et al.,
2007) and may thus be more resilient to changes in temperature. Phenotypic plasticity therefore
plays an important role in determining the sensitivity of individual populations to changes in
temperature.

Sensitivity assessment. An increase in acute or chronic temperature above average British and
Irish temperatures is not likely to have a detrimental effect of Fucus serratus and associated
communities, based on global distribution. However, it should be noted that phenotypic plasticity
will influence the tolerance of individual population. Resistance and resilience are therefore both
assessed as ‘High’ (no impacts to recover from). The biotope group is ‘Not Sensitive’ to a change in
temperature at the pressure benchmark. 

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Temperature decrease
(local)

High High Not sensitive
Q: High A: Medium C: Low Q: High A: High C: High Q: High A: Medium C: Low

Lüning (1984) reported that Fucus serratus survived in the laboratory for a week a range
temperature between 0°C and 25°C.  Fucus serratus is found along the Atlantic coast of Europe
from Svalbard to Portugal and on the shores of north-east America. The seaweed is thus well
within its thermal range in the British Isles. Lüning (1984) placed this species in his 'Cold
temperature North Altantic group'.

Sensitivity assessment. A decrease in acute or chronic temperature above average British and
Irish temperatures is not likely to have a detrimental effect of Fucus serratus and associated
communities, based on global distribution. However, it should be noted that phenotypic plasticity
will influence the tolerance of individual population. Resistance and resilience are therefore both
assessed as ‘High’ (no impacts to recover from). The biotope group is ‘Not Sensitive’ to a change in
temperature at the pressure benchmark. 

Salinity increase (local) High High Not sensitive
Q: Medium A: Medium C: Medium Q: High A: Low C: Medium Q: Medium A: Low C: Medium

This biotope group is found in the intertidal and is therefore likely to experience cyclical periods of
hypo- and hyper-salinity. Fucoids are able to compensate for changes in salinity by adjusting
internal ion concentrations. However this will occur at a cost, reducing photosynthetic rate and
hence affecting the growth rate of the seaweed. Growth rates for Fucus serratus are maximal at a
salinity of 20 psu with the critical limit for recruitment set at 7 psu (Malm et al., 2001).

Sensitivity assessment. Fucus serratus, commonly inhabit narrow fjords where salinity can vary
widely along a spatial (kms) and/or temporal (hours to daily) scale. At the level of the benchmark
both resistance and resilience are assessed as ‘High’ (no impacts to recover from). The biotope
group is therefore ‘Not Sensitive’ to a decrease in salinity at the pressure benchmark.

Salinity decrease (local) High High Not sensitive
Q: High A: High C: High Q: High A: High C: Medium Q: High A: High C: Medium

This biotope group is found in the intertidal and is therefore likely to experience cyclical periods of
hypo- and hyper-salinity. Fucoids are able to compensate for changes in salinity by adjusting
internal ion concentrations. However this will occur at a cost, reducing photosynthetic rate and
hence affecting the growth rate of the seaweed. Growth rates for Fucus serratus are maximal at a
salinity of 20 psu with the critical limit for recruitment set at 7 psu (Malm et al., 2001).

Sufficient salinity is essential for successful fertilization and germination in Fucus (e.g., Brawley,
1992; Serrão et al., 1999). Malm et al. (2001) found that fertilization success in Fucus serratus
decreased substantially with strongly reduced salinity. Indeed the study found that fertilisation
success was 87% at 9 psu but declined to 5% at 6 psu (Malm et al., 2001). Reduced salinity does also
affect dispersal by decreasing swimming performance of fucoid sperm (Serrão et al., 1996).

Sensitivity assessment. Fucus serratus, commonly inhabit narrow fjords where salinity can vary
widely along a spatial (kms) and/or temporal (hours to daily) scale. A reduction in salinity at the
level benchmark (e.g. from 'Full' to 'Reduced'  for one year) could have beneficial effects on Fucus
serratus as growth rates are maximal below full saline conditions. Other characterizing species
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associated with this biotope are also likely to be tolerant of a reduction in salinity. Resistance and
resilience are therefore both assessed as ‘High’ (no impacts to recover from). The biotope group is
‘Not Sensitive’ to a decrease in salinity at the pressure benchmark. 

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: Medium A: Low C: Medium Q: Medium A: Low C: Medium Q: Medium A: Low C: Medium

Water motion is a key determinant of marine macroalgal production, directly or indirectly
influencing physiological rates and community structure (Hurd, 2000). Higher water flow rates
increases mechanical stress on macroalgae by increasing drag. This can result in individuals being
torn off the substratum. Once removed, algae cannot re-attach and will die. Any sessile organism
attached to the algae is also lost.

Fucoids are highly flexible and are able to reorientate their position in the water column to become
more streamlined, which reduces the relative velocity between the algae and the surrounding
water, thereby reducing drag and lift (Denny et al., 1998). Jonsson et al. (2006) found that a flow
speed of 7-8 m/s completely dislodged Fucus vesiculosus and Fucus spiralis individuals larger than 10
cm. Smaller individuals are likely to better withstand increased water flow as they experience less
drag.  Propagule dispersal, fertilization, settlement, and recruitment are also influenced by water
movement (Pearson & Brawley, 1996). In addition, increased water flow will cause scour, though
increased sediment movement, affecting in particular small life stages of macroalgae by removing
new recruits from the substratum and hence reducing successful recruitment (Devinny & Volse,
1978) (see ‘siltation’ pressures).  Changes in water motion can thus strongly influence local
distribution patterns of Fucus spp. (Ladah et al., 2008).  A reduction in water flow can cause a
thicker boundary layer resulting in lower absorption of nutrients and CO2 by the macroalgae.
Slower water movement can also cause oxygen deficiency directly impacting the fitness of algae
(Wahl et al., 2011).

Sensitivity assessment. An increase in water flow to or above 7 m/s is likely to dislodge algae
resulting in a net reduction of habitat provided by this biotope. The biotopes is recorded from
moderately strong (0.5-1.5 m/s) to weak (<0.5 m/s) tidal streams so that the a change of 0.1-0.2
m/s is unlikely to be significant, especially in the moderately wave exposed conditions.  Therfore,
resistance is considered to be 'High', so that resilience is 'High' and the biotope is overall 'Not
sensitive' at the benchmark level. 

 

Emergence regime
changes

Low High Low
Q: High A: High C: Medium Q: High A: Medium C: Medium Q: High A: Medium C: Medium

This biotope group is found in the eulittoral zone from MTL (mean tide level) to MLWN (mean low
water neap) and is therefore subjected to cyclical immersion and emersion over the tidal cycle.
Fucoids can tolerate periodic desiccation but only to a limited extend. Fucus serratus is more
susceptible to desiccation than other Fucus species that are located further up the shore and
subjected more frequently to aerial exposure (Schonbeck & Norton, 1978). In experiments,
(Schonbeck & Norton, 1978; Fucus serratus did not survive translantation further up the shore,
e.g. in the Fucus spiralis belt. The critical water content for Fucus serratus is estimated at 40% with
water losses past this point causing irreversible damage. Beer et al. (2014) found that Fucus serratus
could not regain any positive photosynthetic rates after rehydrating from 10% water content. The
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upper shore extent of Fucus serratus populations may be replaced by species more tolerant of
desiccation and more characteristic of the mid-eulittoral such as Fucus vesiculosus or Ascophyllum
nodosum. 

Early life history stages will be more susceptible to this pressure (Henry & Van Alstyne, 2004).
Germlings are however protected from desiccation by the canopy of adults. A study by Brawley &
Jonhnson (1991) showed that germling survival under adult canopy was close to 100% whereas
survival on adjacent bare rock was close to 0% during exposure to aerial conditions. Fucus canopy
is also likely to protect other underlying species to a great extent. Mortalities of other component
of the community will however occur if the canopy is removed (see ‘abrasion’ pressure).   

Sensitivity assessment. Severe desiccation and associated osmotic stress can increase mortality
(Perason et al., 2009). Other species better able to tolerate desiccation will competitively displace
Fucus serratus following changes in emergence regime. Juvenile stages are more susceptible but
are largely protected from desiccation by the canopy of adults. Resistance is thus assessed as
‘Low’, as most of the Fucus serratus cover will probably be lost or replaced by other
species. Resilience is thus assessed as ‘High’. The biotope groups as a ‘Low’ sensitivity to changes in
emersion regime at the level of the benchmark. 

Wave exposure changes
(local)

High High Not sensitive
Q: High A: Low C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

This biotope is limited to coasts with moderate exposure or less. Fucus serratus is highly flexible but
not physically robust and an increase in wave exposure above this level will cause mechanical
damage, breaking fronds or even dislodging algae from the substratum. Fucoids are permanently
attached to the substratum and would not be able to re-attach if removed. Organisms living on the
fronds and holdfasts will be washed away with the algae whereas free-living community
components could find new habitat in surrounding areas. Wave exposure has been shown to limit
size of fucoids (Blanchette, 1997) as smaller individuals create less resistance to wave. Mature
plants are therefore more sensitive to this pressure. As exposure increases the fucoid population
would become dominated by small juvenile algae. An increase in wave action beyond this would
lead to dominance of the community by grazers and barnacles at the expense of fucoids. Increased
wave can also reduce light penetration thereby lower overall photosynthesis (see ‘changes in
suspended solids’ pressure). A reduction in wave action would have little effect as the species is
naturally found in sheltered conditions.

Sensitivity assessment. Fucus serratus and associated communities are sensitive to an increase in
wave action as increased exposure would result in important losses both in biomass and species
richness. However, a 3-5% change in significant wave height is unlikely to be significant and the
biotope is considered to be 'Not sensitive' at the benchmark level. 

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

Radionuclide
contamination

No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence 

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed

De-oxygenation High High Not sensitive
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: Low C: Low

Sustained reduction of dissolved oxygen can lead to hypoxic or anoxic conditions. Sustained or
repeated episodes of reduced dissolved oxygen have the potential to severely degrade an
ecosystem (Cole et al., 1999). Liitle information on the effect of deoxygenation on fucoids was
found. 

Sensitivity assessment. The macroalgal component of the biotope produce oxygen via
photosynthesis in light and respire in darkness and are exposed to air at low tide. Therefore,
hypoxic conditions in the water column may be allieviated by aerial exposure at low tide. Also,
wave action will result in mixing and aeration of the water column  The epifaunal community is
probably more sensitive to hypoxia, so that hypoxic conditions will probably reduce species
richness but the biotope will remain.  Therefore, a resistance of 'High' is suggested, with a
resistance of 'High' and resultant sensitivity of 'Not sensitive'. 

Nutrient enrichment High High Not sensitive
Q: High A: High C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Nutrient enrichment generally stimulates ephemeral macroalgae growth (Duarte, 1995). This
stimulation of annual ephemerals may accentuate the competition for light and space and hinder
perennial species development or harm their recruitment (Kraufvelin et al., 2007). Krauflin et al.
(2006) found only minor effect on the fucoid community structure as a response to high nutrient
levels  during the first 3 years of the experiment. During the 4th year of exposure however, Fucus
serratus started to decline and population consequently crashed in the 5th year. The study observed
full recovery of algal canopy and animal community in less than 2 year after conditions returned to
normal. The results indicate that established rocky shore communities of perennial algae with
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associated fauna are able to persist for several years, even at very high nutrient levels, but that
community shifts may suddenly occur if eutrophication continues. They also indicate that rocky
shore communities have the ability to return rapidly to natural undisturbed conditions after the
termination of nutrient enhancement.

Sensitivity assessment. The benchmark of this pressure (compliance with WFD ‘good’ status)
allows for a slightly less diverse community of red, green and brown seaweeds with cover variable
depending on local physical conditions. Therefore, at the level of the benchmark both resistance
and resilience are assessed as ‘High’. The biotope group is therefore ‘Not Sensitive’ to this pressure
at the pressure benchmark. 

Organic enrichment Medium High Low
Q: Low A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

Organic enrichment can stimulate the production of primary consumers and may lead to
eutrophication (see ‘nutrient enrichment’ pressure). Husa et al. (2014) found that the
macroalgal communities beyond the immediate proximity of fish farms in Hardangerfjord, Norway,
seemed to be little affected by the deposition of organic matter from the salmon farming industry.
Bellgrove et al. (2010) however determined that coralline turfs out-competed fucoids at a site
associated with organic enrichment caused by an ocean sewage outfall.

Sensitivity assessment. At the level of the benchmark, resistance is assessed as ‘Medium’ as some
mortalities are likely to occur. Recovery will be rapid resulting in ‘High’ resilience score. The
biotope has thus a ‘Low’ sensitivity to organic enrichment at the level of the benchmark. 

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.  

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope occurs on rock substratum. A change towards a sedimentary substratum would lead
to the direct loss of suitable attachment areas resulting in the loss of Fucus serratus and associated
communities. Resistance is assessed as ‘None’. As this pressure represents a permanent change,
recovery is impossible as suitable substratum for fucoids is lacking. Consequently resilience is
assessed as ‘Very Low’.  The habitat therefore scores a ‘High’ sensitivity. Although no specific
evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of
this pressure.  

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Physical change (to
another sediment type)

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to biotopes found on hard rock substratum.

Habitat structure
changes - removal of
substratum (extraction)

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to biotopes found on hard rock substratum.

 

Abrasion/disturbance of
the surface of the
substratum or seabed

Low Medium Medium

Q: High A: Low C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

The biotope group is found in the lower intertidal, an area easily accessible by humans especially at
low tide. Most macroalgea are very flexible but not physically robust. The trampling of shores by
humans will result in increased breakage of algal thalli, decreased thallus height and a net
reduction in biomass (see Tyler-Walters & Arnold, 2005 for review).  

In the UK, Boalch et al. (1974) and Boalch & Jephson (1981) noted a reduction in the cover of
fucoids at Wembury, south Devon, when compared to surveys conducted by Colman (1933). The
size ranges of Ascophyllum nodosum, Fucus vesiculosus and Fucus serratus were skewed to smaller
length, and the abundance of Ascophyllum nodosum in particular was reduced (Boalch & Jephson,
1981). It was suggested that visitor pressure, especially after the construction of a car park, was
responsible for the reduced cover of fucoids (Boalch et al., 1974). They suggested that the raised
edges of the slatey rock severed fronds when the rocks were walked over. However, no
quantitative data was provided.

Pinn & Rodgers (2005) compared a heavily visited ledge with a less visited ledge at Kimmeridge
Bay, Dorset. Although the mean species richness was similar at both sites, the total number of
species was greater at the less utilized site.  Comparatively, the heavily utilized ledge displayed a
reduction in larger, branching algal species (e.g. Fucus serratus) and increased abundances of
ephemeral and crustose species (e.g. Ulva linza and Lithothamnia spp. respectively). Fletcher and
Frid (1996a; 1996b) examined the effects of persistent trampling on two sites on the north east
coast of England. The trampling treatments used were 0, 20, 80, and 160 steps per m2 per spring
tide for 8 months between March and November. Using multivariate analysis, they noted that
changes in the community dominated by fucoids (Fucus vesiculosus, Fucus spiralis and Fucus serratus)
could be detected within 1 to 4 months of trampling, depending on intensity. Intensive trampling
(160 steps/m2 /spring tide) resulted in a decrease in species richness at one site. The area of bare
substratum also increased within the first two months of trampling but declined afterwards,
although bare space was consistently most abundant in plots subject to the greatest trampling
(Fletcher & Frid, 1996a, 1996b). The abundance of fucoids was consistently lower in trampled
plots than in untrampled plots. Fletcher and Frid (1996a) noted that the species composition of the
algal community was changed by as little as 20 steps per m2 per spring tide of continuous trampling
since recolonization could not occur. A trampling intensity of 20 steps per m2 per spring tide could
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be exceeded by only five visitors taking the same route out and back again across the rocky shore
in each spring tide. Both of the sites studied receive hundreds of visitors per year and damage is
generally visible as existing pathways, which are sustained by continuous use (Fletcher & Frid,
1996a, 1996b). However, the impact was greatest at the site with the lower original abundance of
fucoids.

Brosnan & Crumrine (1994) noted that trampling significantly reduced algal cover within 1 month
of trampling. Foliose algae were particularly affected and decreased in cover from 75% to 9.1% in
trampled plots. Mastocarpus papillatus decreased in abundance from 9% to 1% in trampled plots
but increased in control plots. Fucus distichus decreased in the summer months only to recover in
winter but in trampled plots remained in low abundance (between 1 and 3% cover). Trampling
resulted in a decrease in cover of Pelvetiopsis limitata from 16% to 1.5%. Iridaea
cornucopiae decreased from 38 to 14% cover within a month and continued to decline to 4-8%
cover. However, after trampling ceased, recovery of algal cover including Iridaea
cornucopiae and Mastocarpus papillatus was rapid (ca 12 months) (Brosnan & Crumrine, 1994).
Fletcher & Frid (1996a; 1996b) reported a decrease in the understorey algal community of
encrusting coralline algae and red algae, which was probably an indirect effect due to increased
desiccation after removal of the normally protective fucoid canopy (see Hawkins & Harkin, 1985)
by trampling. They also noted that opportunistic algae (e.g. Ulva sp.) increased in abundance. Schiel
& Taylor (1999) also observed a decrease in understorey algae (erect and encrusting corallines)
after 25 or more tramples, probably due to an indirect effect of increased desiccation as above.
However, Schiel & Taylor (1999) did not detect any variation in other algal species due to
trampling effects. Similarly, Keough & Quinn (1998) did not detect any effect of trampling on algal
turf species.

Algal turfs seem to be relatively tolerant of the direct effects of trampling (based on the available
evidence) and some species may benefit from removal of canopy forming algae (Tyler-Walters,
2005). Their tolerance may result from their growth form as has been shown for vascular plants
and corals (Liddle, 1997). Brosnan (1993) suggested that algal turf dominated areas (on shores
usually dominated by fucoids) were indicative of trampling on the rocky shores of Oregon.
However, tolerance is likely to vary with species and their growth form and little species specific
data was found. Furthermore, algal turfs may suffer negative indirect effects where they form an
understorey below canopy forming species.

Conversely, fucoid algae are particularly intolerant of trampling, depending on intensity. Fucoid
algae demonstrate a rapid (days to months) detrimental response to the effects of trampling,
depending on species, which has been attributed to either the breakage of their fronds across rock
surfaces (Boalch et al., 1974) or their possession of small discoid holdfasts that offer little
resistance to repeated impacts (Brosnan & Crumrine, 1992; Fletcher & Frid, 1996b). Foliose
species such as Mastocarpus papillatus, Pelvetiopsis limitata and Iridaea cornucopiae are also likely to
be intolerant of trampling (Brosnan & Crumrine, 1994). Brosnan (1993) suggested that the
presence or absence of foliose algae (e.g. fucoids) could be used to indicate the level of trampling
on the rocky shores of Oregon.

Once Fucus serratus has been removed, understory algae will become exposed. Macroalgae
canopies buffer the effects of high temperatures and water loss on organisms below their fronds in
particular when exposed to air. For instance Bertness et al. (1999) determined that
substratum temperatures were on average 8-10°C lower under the canopy than on bare rock.
Desiccation of understorey algae will create bare patches (see ‘changes in emergence regime’
pressure). These bare patches can lead to invasions by grazing limpets which in turn can promote
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even greater changes in community composition (Little et al., 2009). The removal of macoralgae
canopy due to abrasion will thus have a direct impact on the entire community. However cracks
and crevices are ideal places for germlings to develop and sessile species to settle as these sites
may be protected from abrasion.  Stagnol et al. (2013) found that opportunistic ephemeral green
algae such as Ulva sp. responded positively to disturbance. These green ephemeral algae are major
competitors of Fucus serratus for space colonization and nutrient uptake. Blooms of ephemeral
algae facilitated by disturbance may then slow the development of longer-lived perennial algae,
especially fucoids. Disturbance is a structuring factor in intertidal habitats. Perturbation events
often remove organisms, increase mortality, and release resources such as space, nutrients and
light that may enhance the appearance of new colonists (Connell et al., 1997). As a result of these
contrasting effects, post-disturbance communities are frequently different from initial
communities in terms of composition and dominance of species. Overall, disturbance causes a shift
towards a disturbance tolerant seaweed community (Little et al., 2009).

Epifaunal species have been found to be particularly adversely affected by physical disturbance,
either due to direct damage or modification of the habitat (Jennings & Kaiser, 1998). Similarly,
Dayton (1971) observed greatly reduced abundance of species living on, under, and among fucoids
following large disturbance events. Hydroids, bryozoans and encrusting fauna are easily ripped
from the substratum and are unlikely to re-attach and will die. The shells of limpets, tubeworms
and periwinkles may be crushed by the weight and force of the abrasion. However, some epifaunal
species have been reported to exhibit increased abundances on high fishing effort areas, probably
due to their ability to colonize and grow rapidly (Bradshaw et al., 2000). For
instance Ascidiella species had increased in abundance in an area subject to scallop dredging
(Bradshaw et al., 2002). The breadcrumb sponge Halichondria panicea is attached to the substratum
and will not survive abrasion and physical disturbance. Hiscock (1983) noted that a community,
under conditions of scour and abrasion from stones and boulders moved by storms, developed into
a community consisting of fast growing species such as Spirobranchus triqueter due to decreased
competition. A shift in community composition is thus expected immediately after the disturbance
event.  

The effects of trampling are dependent on intensity, expressed as frequency and force per unit
area of the impacting 'foot print' (see Liddle, 1997, Tyler-Walters & Arnold, 2008). Clearly,
mechnical abrasion due to vehicles, jack-up-barges, or grounding vessels will excede the abasive
'intensity' of trampling by humans or livestock.

Sensitivity assessment. Physical disturbance resulting from activities such as trampling (by
humans and livestock) or absrasive activities (e.g. vehicles, jack-up-barges, or grounding vessels)
could cause a significant loss of fucoid cover and and an important reduction in species abundance
and diversity. Resistance is thus assessed as ‘Low’. If some Fucus serratus population remain
recovery will be fairly. However recruitment mortality, grazing by limpets and the presence of
turfs and encrusting algae can slow down and limit recovery. Resilience is thus assessed as
‘Medium’. The biotope therefore scores a ‘Medium’ sensitivity to abrasion pressure. If the entire
population of Fucus serratus is removed, other species may come to dominate and the recovery will
take considerably longer. Re-establishment of the seaweed may depend on the ability to out-
compete other species and this may be dependent on suitable environmental conditions.

Penetration or
disturbance of the
substratum subsurface

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR
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The species characterizing this biotope occurr on hard rock which is resistant to subsurface
penetration. Therefore, this pressure is not relevant but any penetrative activites may cause
'abrasion', which is discussed above. 

Changes in suspended
solids (water clarity)

Medium High Low
Q: Medium A: Medium C: Medium Q: High A: Low C: Medium Q: Medium A: Low C: Medium

Light is an essential resource for all photo-autotrophic organisms. Changes in suspended solids
affecting water clarity will have a direct impact on photosynthesis in Fucus serratus. Irradiance
below the light compensation point of photosynthetic species can compromise carbon
accumulation (Middelboe et al., 2006). However turbidity is only relevant when the biotope is
covered with water as seaweed photosynthesis declines on emersion and recommences when
recovered with water. Increased siltation may cover the frond surface of Fucus serratus with a layer
of sediment further reducing photosynthesis and growth rate. Sediment deposition can also
interfere with attachment of microscopic stages of seaweeds reducing recruitment (see ‘siltation’
pressures). In extreme trubidity , such as found in the Bristol Channel, Fucus serratus is exlcuded
from the bottom of the intertidal (below 2m above chart datum) due to the lack of light for
sustained growth (Chapman, 1995). 

Other characterizing species will also be adversely affected. In particular filter feeding organisms
will have their feeding apparatus clogged with suspended particles leading to a reduction in total
ingestion and a reduced scope for growth especially since cleaning the feeding apparatus is likely
to be energetically expensive.

Sensitivity assessment. Changes in suspended solids reducing water clarity are likely to have
adverse effects on the biotope group reducing Fucus serratus photosythesis as well as species
richness. Resistance is thus assessed as ‘Medium’ at the benchmark level. Once conditions return
to 'normal' Fucus serratus is likely to rapidly regain photosynthesis and growth rate. Associated
communities will also rapidly recover as most of the intolerant species produce planktonic larvae
and are therefore likely to be able to recolonize quickly from surrounding areas. Resilience is thus
assessed as ‘High’. Overall this biotope group scores a ‘Low’ sensitivity to this pressure. 

Smothering and siltation
rate changes (light)

Medium High Low
Q: Low A: NR C: NR Q: High A: Medium C: Low Q: Low A: Low C: Low

Sedimentation can directly affect assemblages inhabiting rocky shores by the burial/smothering
and scour/abrasion of organisms. Fucus serratus is attached to the substratum by a holdfast is thus
not able to relocate in response to increased sedimentation. Smothering will prevent
photosynthesis resulting in reduced growth and eventually death. Sedimentation of bedrock can
impede attachment of Fucus embryos as well as decrease survival and growth of juvenile through
both scour and burial (Schiel et al., 2006). An increase in the vertical sediment overburden can also
reduce growth whilst hindering the regeneration abilities of adults (Umar et al., 1998). 

The state of the tide will mediate the extent of impact. If smothering occurs at low tide when the
algae is lying flat on the substratum, then most of the organism as well as the associated
community will be covered by the deposit of fine material at the level of the benchmark. However,
if smothering occurs whilst the alga is submerged standing upright then the photosynthetic
surfaces of adult plants will be left uncovered. The resistance of this biotope group to this pressure
may thus vary with time of day. Germlings however are likely to be smothered and killed in both
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scenarios and are inherently most susceptible to this pressure.  Smothering will cause direct
mortalities in the associated community, particularly in sessile organisms unable to relocate.
Lower densities of herbivores have also been attributed to increased sedimentation as silt will
reduce their feeding activity and limit their movements (Airoldi & Hawkins, 2007; Schiel et al.,
2006). The biotope group occurs in sheltered to moderately exposed conditions. In areas with
greater water flow, excess sediments can be readily removed, reducing the time of exposure to this
pressure.

The burrowing mechanisms of the piddocks Pholas dactylus and Barnea candida and other Pholads,
mean that the burrows have a narrow entrance excavated by the juvenile. As the individual grows
and excavates deeper the burrow widens resulting in a conical burrow from which the adult cannot
emerge. Petricolaria pholadiformis excavates a cylindrical burrow (Ansell, 1970) and hence may be
able to relocate in sandy sediments, however although burrowing mechanisms have been studied,
however  no evidence was found to suggest this species can re-emerge through sediments and re-
bury. Piddocks cannot therefore emerge from layers of deposited silt as other more mobile
bivalves can.

No examples of direct empirical evidence or experiments on mortality rates have been found.
Sometimes the substratum in which piddocks reside is covered by a thin layer of loose sandy
material, through which the piddocks maintain contact with the surface via their siphons.   It is
likely that the piddocks would be able to extend their siphons through loose material, particularly
where tidal movements shift the sand around. Pholas dactylus have been found living under layers
of sand in Aberystwyth, Wales, (Knight, 1984) and in Eastbourne, with their siphons protruding at
the surface (Pinn et al., 2008). Barnea candida has also been found to survive being covered by
shallow layers of sand in Merseyside (Wallace & Wallace, 1983). Wallace & Wallace (1983) were
unsure as to how long the Barnea candida could survive smothering but noted that, on the coast of
the Wirral, the piddocks have survived smothering after periods of rough weather. Where
smothering is constant, survival can be more difficult. The redistribution of loose material
following storms off Whitstable Street, in the Thames Estuary, is thought to be responsible for the
suffocation of many Petricolaria pholadiformis and it is possible that this species may be the most
intolerant of the three piddock species associated with this biotope. However, it was not known
how deep the layer of 'loose material' was, nor how long it lasted for or what type of material it was
made up of.

Indirect indications for the impacts of siltation are provided by studies of Witt et al., (2004) on the
impacts of harbour dredge disposal. Petricola pholadiformis was absent from the disposal area, and
Witt et al., (2004) cite reports by Essink (1996, not seen) that smothering of Petricola pholadiformis
from siltation could lead to mortality within a few hours.  Hebda (2011) also identified that
sedimentation may be one of the key threats to Barnea truncata populations.  At Agigea (Micu,
2007) reported that smothering of clay beds by sand and finer sediments had removed populations
of Pholas dactylus. In this area sand banks up to 1m thick frequently shift position driven by storm
events and currents (Micu, 2007). Similar smothering was described in the case of Barnea candida
populations boring into clay beds (Gomoiu & Muller 1962, cited from Micu, 2007).

Species comprising, and living within the dense algal mat are likely to be intolerant of smothering.
Sporelings would certainly be adversely affected as Vadas et al. (1992) stated that algal spores and
propagules are adversely affected by a layer of sediment, which can exclude up to 98% of light.

Sensitivity assessment. As piddocks are essentially sedentary and as siphons are relatively short,
siltation from fine sediments rather than sands, even at low levels for short periods could be lethal.
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 Resistance to siltation is assessed as ‘Low’ for piddocks and the algal mat although effects would
be mitigated where water currents and wave exposure rapidly removed the overburden and this
will depend on shore height and local hydrodynamic conditions. Resilience is assessed as ‘Medium’
(2-10 years) for piddocks and sensitivity is therefore assessed as ‘Medium’. 

Sensitivity assessment. Burial will lower survival and germination rates of spores and cause some
mortality in early life stages. Adults are more resistant but will experience a decrease in growth
and photosynthetic rates. Resistance is therefore assessed as ‘Medium’. Recovery will be rapid
once conditions return to normal, resulting in a ‘High’ resilience score. Overall the biotope group
has a ‘Low’ sensitivity to smothering at the level of the benchmark.

Smothering and siltation
rate changes (heavy)

Low Low High
Q: High A: Medium C: Medium Q: Medium A: Low C: Medium Q: Medium A: Low C: Medium

Several studies found that increasing the vertical sediment burden negatively impact fucoids
survival and associated communities (see above). At the level of the benchmark (30 cm of fine
material added to the seabed in a single event) smothering could result in significant mortalities,
especially in sheltered examples of the biotope where the sediment burden could remains for
many tidal cycles. Resistance is assessed as ‘Low’ as all individuals exposed to siltation at the
benchmark level are predicted to die and consequent resilience as ‘Low’. Sensitivity based on
combined resistance and resilience is therefore assessed as ‘High’

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not assessed

Electromagnetic changes No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence was found.

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Fucus serratus and associated species have no hearing perception but vibrations may cause an
impact, however no studies exist to support an assessment

Introduction of light or
shading

Medium High Low
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: Low C: Low

Fucoids are dependent on light, so that changes in light intensity are likely to affect
photosynthesis, growth, competition and survival. Chapman (1995) noted that too little or too
much light are likely to be stresses.  There is considerable literature on the light compensation
point of marine algae (see Luning, 1990) but it is difficult to correlate such evidence with 'shading',
as light saturation and compensation points depend on light availability, light quality, season and
turbidity.  As fucoids are out-competed in sublittoral conditions, it is likely that permanent shading
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woud affect their growth and allow them to be out-competed by other, more shade tolerant
species, within the affected area. Therefore a resistance of ' Medium' is suggested albeit at low
confidence. Resilience is likely to be 'High' so that sensitivity is 'Low.  

Barrier to species
movement

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant – this pressure is considered applicable to mobile species, e.g. fish and marine
mammals rather than seabed habitats. Physical and hydrographic barriers may limit propagule
dispersal.  But propagule dispersal is not considered under the pressure definition and benchmark.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to seabed habitats.  Note collision by grounding vessels is addressed under ‘surface
abrasion’. 

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant 

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Key characterizing species within this biotope are not cultivated or translocated. This pressure is
therefore considered ‘Not Relevant’ to this biotope.

Introduction or spread of
invasive non-indigenous
species

Medium Low Medium

Q: High A: Medium C: Medium Q: Low A: NR C: NR Q: Low A: Low C: Low

Thompson & Schiel (2012) found that native fucoids showed high resistance to invasions by the
Japanese kelp Undaria pinnatifida. However cover of Fucus serratus was inversely correlated with
the cover of Sargassum muticum indicating competitive interaction between the two species
(Stæhr et al., 2000). Stæhr et al. (2000) determined that the invasion of Sargassum muticum could
affect local algal communities through competition mainly for light and space. 

The Portuguese oyster Magallana gigas was introduced in England in 1926 for cultivation purposes
and is now found in the wild. The species can form dense beds covering large patches on the shore.
In areas where the biotope coincides with the distribution of Magallana gigas, i.e. the south coast of
Devon and coast of Essex, the oyster could become dominant.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Sensitivity assessment. Resistance is assessed as ‘Medium’ since invasive species have the
potential to alter the recognizable biotope. Recovery would be rapid once conditions return to
normal, resulting in a ‘High’ resilience. However, return to ‘normal’ conditions is highly unlikely if
an invasive species would come to dominate the biotope. Indeed recovery would only be possible if
the majority of the INIS were removed (through either natural or unnatural process) to allow the
re-establishment of other species. Therefore actual resilience will be much lower (‘Low’ to ‘Very
Low’) resulting in an overall ‘Medium’ sensitivity score. 

Introduction of microbial
pathogens

High High Not sensitive
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: NR C: NR

Very little is known about infections in Fucus (Wahl et al., 2012). Coles (1958) identified parasitic
nematodes that caused galls on Fucus serratus in south west Britain. More recently, Zuccaro et al.
(2008) detected a number of fungal species associated with Fucus serratus. So far no mortalities
have been associated to the introduction of microbial pathogens. However, the potential for
increased biotic interactions involving parasites or pathogens is on the rise in many marine
systems (Torchin et al., 2002). Both resistance and resilience are assessed as ‘High’; the biotope is
therefore ‘Not Sensitive’ to this pressure. However the assessment has a low confidence score as
more research is needed into the effects of microbial pathogen on Fucus serratus and associated
communities. 

Removal of target
species

Low Medium Medium
Q: High A: High C: High Q: High A: Medium C: High Q: High A: Medium C: High

Fucus serratus is one of several harvested and exploited algal species. Seaweeds were collected
from the middle of the 16th century for the iodine industry. Nowadays seaweeds are harvested for
their alginates, which are used in the cosmetic and pharmaceutical industries, for agricultural
supply, water treatment, and for human food and health supplements (Bixler & Porse, 2010).

The commercial harvest removes seaweed canopies which will have important direct and indirect
effects on the wider ecosystem. Stagnol et al. (2013) investigated the effects of commercial
harvesting of intertidal Fucus serratus on ecosystem biodiversity and functioning. The study found
that the the removal of macroalgae affected the metabolic flux of the area. Flows from primary
production and community respiration were lower on the impacted area as the removal of the
canopy caused changes in temperature and humidity conditions. Suspension feeders were the
most affected by the canopy removal as canopy-forming algae are crucial habitats for these
species, most of them being sessile organisms.

Other studies confirm that loss of canopy had both short and long-term consequences for benthic
communities in terms of diversity resulting in shifts in community composition and a loss of
ecosystem functioning such as primary productivity (Lilley & Schiel, 2006; Gollety et al., 2008).
Removal of the canopy caused bleaching and death of understorey red turfing algae. Stagnol et al.
(2013) observed Patella vulgata recruiting in bare patches of disturbed plots. Experimental studies
have shown that limpets control the development of macroalgae by consuming microscopic phases
(Jenkins et al., 2005) or the adult stages (Davies et al., 2007). The increase in Patella vulgata
abundance could thus limit the recruitment and growth of Fucus serratus on the impact zone. Due
to the high intolerance of macroalgae communities to human exploitation, the European Union put
in place a framework to regulate the exploitation of algae establishing an organic label that implies
that ‘harvest shall not cause any impact on ecosystems’ (no. 710/2009 and 834/2007).
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Sensitivity assessment. Removal of the Fucus serratus canopy will have a negative impact on the
diversity of animal community and the productivity of the area. The harvesting impact on the
animal community was amplified by the settlement of an ephemeral canopy of Ulva spp., a seasonal
opportunistic green alga (ref). Resistance is thus assessed as ‘Low’. If some Fucus serratus
population remain recovery will be fairly rapid. However recruitment mortality, grazing by limpets
and the presence of turfs and encrusting algae can slow down and limit recovery. A switch to a
disturbance community will also slow the recovery of Fucus serratus and associated community.
Resilience is thus assessed as ‘Medium’. The biotope therefore scores a ‘Medium’ sensitivity to
this pressure.

If the entire population of Fucus serratus is removed, other species may come to dominate and the
recovery will take considerably longer. Re-establishment of the seaweed may depend on the
ability to out-compete other species and this may be dependent on suitable environmental
conditions.

Removal of non-target
species

High High Not sensitive
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: Low C: Low

The harvest of algae, crabs, snails, mussels, and many species of fish from the shore is a widespread
practice. Fucus serratus has no known obligate relationships and the removal of non-target species
will therefore not have a significant impact.  Removal of Fucus as by-catch is unlikely and direct
removal is addressed under 'removal of target species'.  Resistance to this pressure is deemed
‘High’.  Resilience is also ‘High’ as there are no ecological impacts to recover from, resulting in a
‘Not Sensitive’ score. The assessment is based on expert knowledge resulting in a 'Low' confidence
score. 

Fucoids may be directly removed or damaged by static or mobile gears that are targeting other
species, as well as access (trampling) across the biotope. These direct, physical impacts are
assessed through the abrasion and penetration of the seabed pressures. The sensitivity
assessment for this pressure considers any biological/ecological effects resulting from the removal
of non-target species on this biotope. 
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